Artificial Intelligence


3 Big Generative AI Problems Yet To Be Addressed

artificial intelligence computer chip

Adopting generative AI into technology is potentially more significant than when the internet was introduced. It is disrupting most creative efforts and isn’t near as capable as it will be by the end of the decade.

Gen AI will force us to rethink how we communicate, how we collaborate, how we create, how we solve problems, how we govern, and even how and whether we travel — and that is far from an exhaustive list. I expect that once this technology reaches maturity, the list of things that have not changed will be far shorter than the list of things that were.

This week, I’d like to focus on three things we should begin discussing that represent some of the bigger risks of generative AI. I’m not against the technology, nor am I foolish enough to suggest it be paused because pausing it would be impossible now.

What I suggest is that we begin to consider mitigating these problems before they do substantial damage. The three problems are data center loading, security, and relationship damage.

We’ll close with my Product of the Week, which may be the best electric SUV coming to the market. I’m suddenly in the market for a new electric car, but more on that later.

Data Center Loading

Regardless of all the hype, few people are using generative AI yet, let alone using it to its full potential. The technology is processor- and data-intensive while it is very personally focused, so having it reside only in the cloud will not be feasible, mainly because the size, cost, and resulting latency would be unsustainable.

Much like we have done with other data and performance-focused applications, the best approach will likely be a hybrid where the processing power is kept close to the user. Still, the massive data, which will need aggressive updating, will need to be more centrally loaded and accessed to protect the limited storage capacities of the client devices, smartphones, and PCs.

But, because we are talking about an increasingly intelligent system that will, at times — like when it is used for gaming, translation, or conversations — require very low latency. How the load is divided without damaging the performance will likely determine whether a particular implementation is successful.

Achieving low latency won’t be easy because while wireless technology has improved, it can still be unreliable due to weather, placement of the towers or user, maintenance outages, manmade or natural disasters, and less than complete global coverage. The AI must work both online and offline while limiting data traffic and avoiding catastrophic outages.

Even if we could centralize all of this, the cost would be excessive, though we do have underused performance in our personal devices that could mitigate much of that expense. Qualcomm is one of the first firms to flag this as a problem and is putting a lot of effort into fixing it. Still, expect it will be too little and too late, given how fast generative AI is advancing and how relatively slowly technology like this is developed and brought to market.


I was an internal auditor specializing in security and a competitive analyst trained in legal ways to penetrate security. I learned that if someone can get enough data, they can more accurately estimate the data they don’t have access to.

For instance, if you know the average number of cars in a company parking lot, you can, with reasonable accuracy, estimate the number of employees a firm has. You can generally scan social media and figure out the interests of the firm’s leading employees, and you can watch job openings to determine the kinds of future products the company is likely developing.

These large language models collect massive amounts of data, and I expect many of the things these LLMs scan in are or should be confidential. In addition, if enough information is collected, the gaps resulting from what’s not scanned in will be increasingly derivable.

This scenario does not apply only to corporate information. With the kind of personal information that is readily available, we’ll also be able to determine much more about the private lives of users.

Employers will be able to locate whistleblowers, disgruntled or disloyal employees, bad employee behavior, and employees who are taking advantage of the firm illicitly with greater accuracy. Protecting against a hostile entity deriving confidential information about you, your company, or even your government is becoming more viable with far greater accuracy than I enjoyed as either an auditor or competitive analyst.

The best defense is likely to create enough disinformation so that the tools don’t know what is real and what isn’t. However, this path will also make the connected AI systems far less reliable overall, which would be fine if only the competitor used those systems. However, it is likely to compromise the systems of the company that wants protection might use, resulting in a growing number of bad decisions.

Interpersonal Relationships

Companies like Mindverse with its MindOS and Suki with its employee supplementing avatars are showcasing the future personal use of generative AI as a tool that can present as if it is you. As we progressively use tools like this, our ability to determine what is real and what is digital will be reduced significantly, and our opinions of the people that use these tools will reflect more on the tool than on the person.

Imagine having your digital twin do a virtual interview, be the face of your presence on a dating app or take over for much of your daily virtual interactions. The tool will try to be responsive to the person interacting with it, it will never get tired or grumpy, and it will be trained to present you in the best possible light. However, as it advances down this path, it will be less and less like who you really are — and likely become far more interesting, attractive, and more even-tempered than you could ever be.

This will cause problems because, much like actors who date someone who has fallen for a character the actor once played, the reality will create subsequent breakups and a loss of trust.

The easiest fix would be to learn either to behave like your avatar or to use them for interactions with friends and co-workers. I doubt we’ll do either, but these are the two most viable approaches to mitigating this coming problem.

Wrapping Up

Generative AI is amazing and will significantly improve performance as it ramps into the market and users reach critical mass. Yet there are significant problems that will need to be addressed, including excessive data center loading, which should drive hybrid solutions in the future, the inability to prevent deriving secrets from these enormous language models, and a considerable reduction in interpersonal trust.

Understanding these coming risks should help avoid them. However, the fixes aren’t great, suggesting that we’ll likely regret some of the unintended consequences of using this technology.

Tech Product of the Week

The Fisker Ocean

My Jaguar I-Pace bit the dust last month due to a towing accident that damaged its battery pack. The result was a $100,000 estimate to fix the car, which is now worth closer to $40,000. I’m expecting USAA, my insurance carrier, to total the car. So, I’ve been looking at replacement electric cars, and across the board, availability sucks.

I’m likely to get another Jaguar I-Pace primarily because I don’t want to wait months or years for my own car again. Currently, I’m sharing my wife’s Volve XC-60 and running into a lot of scheduling problems where both of us need the car at the same time. I went shopping for a new electric SUV, and the best one I found was the Fisker Ocean.

The All-Electric Fisker Ocean

The all-electric Fisker Ocean (Image Credit: Fisker)

As with most electrics, the wait for a new one is months, and I can’t afford that wait. Of the electric cars that are available this year, the Fisker Ocean hit all the boxes. Its features include:

  • 350-mile range (the bar is 300 miles)
  • Your smartphone can be your key to the vehicle
  • Reverse charging, so your car can power your house during a power outage
  • An impressive 0-60 time of around 3.6 seconds (I like performance)
  • A solar panel roof to increase range and supply emergency power
  • A convertible-like mode (which really opens the car up)
  • One of the cleanest designs on the market.

The Fisker Ocean is an impressive car. If I could wait until the end of the year to get one, I’d order it in a moment. Sadly, that isn’t the case. Nevertheless, the Fisker Ocean is still my Product of the Week.

The opinions expressed in this article are those of the author and do not necessarily reflect the views of ECT News Network.
Rob Enderle

Rob Enderle has been an ECT News Network columnist since 2003. His areas of interest include AI, autonomous driving, drones, personal technology, emerging technology, regulation, litigation, M&E, and technology in politics. He has an MBA in human resources, marketing and computer science. He is also a certified management accountant. Enderle currently is president and principal analyst of the Enderle Group, a consultancy that serves the technology industry. He formerly served as a senior research fellow at Giga Information Group and Forrester. Email Rob.

Leave a Comment

Please sign in to post or reply to a comment. New users create a free account.

How will consumers react to Apple's WWDC 2023 announcements?
Loading ... Loading ...

EmergTechNews Channels